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Abstract In this paper, a viscoelastic model able to capture important mechanical features of a wide class
of glassy polymers is presented. Among them, the ability of reproducing the highly nonlinear rate-dependent
stress response and the post-yield strain softening phenomenon. The simplicity of the proposition allows to
recover the same mathematical structure of classical constitutive approaches, well suited for the use of implicit
finite element codes. To this aim, the flow resistance concept, elsewhere known as shear strength, is reframed as
a state variable of an accumulated strain measure. Three alternative expressions for this function are presented.
The model is cast within a variational framework in which consistent constitutive updates are obtained by a
minimization procedure. Convenient choices for the conservative and dissipative potentials reduce the local
constitutive problem to the solution of a single nonlinear scalar equation, emulating the simplest case of
viscoelastic models. Numerical tests on the constitutive model show excellent agreement with experimental
data. Finally, a 3D simulation of a standard specimen with heterogeneous material properties illustrates the
ability of the present proposition to be implemented in implicit finite element codes.

Keywords Glassy polymers · Variational principles · Viscoelasticity · Finite strain

1 Introduction

Products made of polymers are undoubtedly in our daily routine. These products can exhibit complex shapes
and a variety of optical characteristics, a fact that reveals how versatile polymers can be. Further than aesthetics
purposes, polymers are being employed to fulfill other needs, such as structural, performance or biocompati-
bility requirements in biomedical applications [1–4].

Among their wide variety of compositions, amorphous glassy polymers deserve special attention due to
their widespread applicability and manufacturing flexibility. Constitutive modeling of polymers depends on
the improvement in experimental techniques and numerical methods for predicting their response regarding
non-monotonic and coupled loads. Glassy polymers show a significant change of properties when close to
the glassy transition. This transition is associated with polymeric mobility, and it is frequently asserted that
previously highly constrained chains start exhibiting important rotational and translational movements beyond
the glassy transition. Concerning the general behavior, glassy polymers are known to present strong dependency
on temperature, strain rate, and pressure [5–13]. In addition, their mechanical properties can vary drastically
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according to specific processing conditions [14,15].Manymodels can be found in the literature concerning this
type of polymers, and interesting surveys are presented by recent papers [16,17]. In the following paragraphs,
however, we will focus on those models that are related to the specific contribution of the present manuscript.

Historically, Haward and Thackray [18] attempted to model glassy polymers for a wide range of strains
using an unidimensional rheological model. Up to the knowledge of the authors, one of the first extensions to
fully tridimensional cases is found in the thesis work of Bagepalli [19] accounting for large deformations, and
further developments were carried by Boyce et al. [20].

Since then, a widely used class of models is based on the concept of shear strength evolution, referenced
here as flow resistance. This property is named differently across the literature and can also be seen as athermal
shear resistance [20], intermolecular resistance to plastic flow [21], or microscale athermal shear strength
[22]. This flow resistance property assumes the role of an internal variable and is almost always presented
throughout evolution rules in the format of differential equations that have become increasingly complex over
time. Examples include the initial BPAmodel [20], the model of Anand and Gurtin [21], the thermomechanical
models of Ames et al. [13] and Srivastava et al. [23], the EBPA model of Holopainen [16], or those of Poulain
et al. [22] and Gudimetla and Doghri [17]. When conventional implicit finite element codes are meant to be
used, rather complex algebraic coupled equations result from these evolution rules.

Our purpose here is to show that, aided by some simple changes in the flow resistance concept, a variational
constitutive framework can be employed for this class of polymers. Over the last two decades, several works
concerning variational constitutive updates have been developed. To name a few, Ortiz and Stainier [24] and
Radovitzky and Ortiz [25] present a variational framework for dissipative solids, and discuss numerical and
mathematical aspects for error estimation andmesh adaptivity. Yang et al. [26] extend an isothermal variational
formulation to general dissipative solids considering thermomechanical coupling. Fancello et al. [27] develop
a general formulation for finite viscoelasticity based on spectral decomposition. Mosler and Bruhns [28]
propose a variational constitutive update based on non-associative plasticity, while Mosler [29] works with
finite plasticity and nonlinear kinematic hardening. Kintzel and Mosler [30] use a variational framework to
model low cycle fatigue in metals, while El Sayed et al. [31] and Vassoler et al. [32] apply this variational scope
to the modeling of biological tissues. Stainier and Ortiz [33] study a coupled thermomechanical variational
theory in finite viscoplasticity. Miehe [34] presents a variational constitutive framework for gradient-type
dissipative materials. Stainier [35] reports approximation errors when integrating the dissipation potential and
develop consistent incremental approximations. Bleier andMosler [36] discuss the parametrization of the flow
rule in the context of variational constitutive updates. Brassart et al. [37,38] employ a variational principle for
the homogenization of composites. Brassart and Stainier [39] study the convergence properties of a viscoplastic
model. Concerning coupled thermomechanical problems, Bartels et al. [40] adopt a variational approach for
the study of finite strain plasticity and the temperature increase during plastic deformation, while Junker and
Hackl [41] derive a model for thermomechanically coupled phase transformations in polycrystalline shape
memory alloys.

As illustrated by theworks listed above, this thermodynamically consistent variational framework allows the
inclusion of a variety of dissipative mechanisms in a clear and systematic mathematical setting. In particular,
when applied to the current constitutive model, the isothermal formulation of [24] yields one single scalar
equation to be numerically solved.

The paper is organized as follows. Section 2 concerns the introduction of some basic kinematic assumptions
followed by the thermodynamic potentials of the current formulation. Section 3 sets the developed model in
a variational framework where all the equations are formally obtained. The key aspects regarding the flow
resistance variable are then introduced in Sect. 5 and the connections between existing models are made.
Section 6 provides some numerical examples of the model through comparison against experimental data and
assessment of a FEM test case.

2 Constitutive modeling

2.1 Kinematics

The kinematic variables adopted in the current visco-hyperelastic model follow assumptions commonly used
in the literature. The multiplicative decomposition defined by Lee [42] is employed to split the deformation
gradient F into elastic Fe and inelastic Fp contributions

F = FeFp (1)
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In addition, the inelastic flow is assumed to be isochoric (det Fp = 1), and consequently, the inelastic velocity
gradient Lp = Ḟp (Fp)−1 is a traceless tensor. The inelastic flow is also assumed to be irrotational, which is
expressed by a null inelastic spinWp. Based on this last assumption, the inelastic velocity gradient Lp becomes
symmetric and equal to the inelastic stretching tensor Dp

Lp = Dp + Wp, Wp = 0 ⇒ Ḟp
(
Fp)−1 = Dp (2)

or equivalently
Ḟp = DpFp (3)

which defines an evolution law for the inelastic deformation gradient. This last expression is used as an
important link to connect different thermodynamic states when dealing with discrete time steps. It is also
assumed that an isochoric deformation gradient Fiso can be obtained directly from the deformation gradient
and the Jacobian (J = det F)

Fiso = J− 1
3 F (4)

These kinematic assumptions are represented in the rheological model shown in Fig. 1.

2.2 Thermodynamic framework

The major difference among the available models used to describe glassy polymers [16,20,21,43] and the
current work relies on thermodynamic aspects. These previous works assume the existence of an internal
variable called flow resistance whose evolution is controlled by a set of time differential equations solved as
part of the constitutive problem. Within the present approach, this mechanical property becomes dependent
on another convenient variable.

The thermodynamic state E of a sufficiently small neighborhood around a material point X is assumed to
be uniquely described by the total deformation gradient F, and two internal variables; the inelastic deformation
gradient Fp and by a scalar quantity r referenced as the accumulated inelastic strain:

E = {
F, Fp, r

}
(5)

The accumulated inelastic strain is a measure of how much the material has undergone inelastic stretching, up
to the current time t . It is formally defined by

r =
∫ t

0

√
2

∥
∥Dp

∥
∥ dt (6)

Fig. 1 Schematic representation of the current proposition through the use of a rheological model. Main features are depicted:
the energy potentials are represented by springs (Eq. 7); the dissipation potentials are represented by dashpots (Eq. 17); and the
explicit use of a state-dependent flow resistance s (r) is shown (Eq. 18)
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2.2.1 Helmholtz free energy

Following a frequently used approach in the literature, the Helmholtz free energyψ is split into three potentials

ψ (E) = U (J ) + L
(
C iso) + H

(
εe

)
(7)

Moreover, each potential has its own state dependence by means of specific variables related to the physical
behavior each one ismeant tomodel. This separation is classical and provides flexibility for different approaches
concerning incompressibility issues [44]. The first term accounts for the accumulated energy based exclusively
on the Jacobian measure of volumetric deformation (J = det F), and is for example given by

U (J ) = κ

2
(ln J )2 (8)

Polymeric chains may undergo large values of stretching which can eventually make them reach their
ultimate extension capabilities. In this case, large quantities of energy would be required to further stretch
the chains, rendering at the end a virtual state of locking. Hyperelastic models that are concerned with these
phenomena are well represented by the eight-chain model, introduced by Arruda and Boyce [45], or by the
model due to Gent [46]. The latter is used here for the potential L in (7)

L
(
C iso) = −λμL

2
ln

[
λ + 3 − tr

(
C iso)

λ

]

(9)

where the isochoric right Cauchy–Green tensor C iso is expressed by

C iso = (
Fiso)T Fiso (10)

Finally, we consider a quadratic Hencky energy potential H , given by

H
(
εe

) = μH
∥
∥dev

(
εe

)∥∥2 (11)

and dependent on the logarithmic elastic strain εe

εe = 1

2
ln Ce, Ce = (

Fe)T Fe (12)

being Ce the elastic right-Cauchy tensor. Intuitively, Fig. 1 depicts these energy potentials as springs in the
rheological model. One can notice the possibility of appending multiple Hencky potentials, which will be
clarified in Sect. 4. This is part of a strategy for improving the description of unloading conditions seen in
some polymers.

2.2.2 Dissipation potential

From a given state E (Eq. 5), it remains to define the process Ė

Ė =
{
Ḟ, Ḟp, ṙ

}
(13)

that drives the current state toward the next one.Aprocess should be understood as a set of differential equations,
typically written in a rate format, that completely defines the evolution of the variables within the model. Even
though the inelastic deformation gradient Fp and the accumulated inelastic strain r are state variables, their
evolution cannot be arbitrarily set. We assume that the evolution of the internal variables depend solely on the
current state,

Ḟp = Ḟp (E) (14)

ṙ = ṙ (E) (15)

and thus they define the internal process Ėi
Ėi =

{
Ḟp, ṙ

}
(16)
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If the state is known, then by the aid of Eq. (3), it is sufficient to propose an expression (or flow rule) for the
inelastic stretching Dp in order to completely define Ḟp.

Dissipative mechanisms considered are those of slippage and constant re-adaption of polymeric chains.
They are accounted by means of a dissipative potential φ dependent on the current state and on the rates of
internal variables. A power-law-type expression is convenient for the present case:

φ (ṙ; r) =
⎧
⎨

⎩
ṙ0

s(r)
m+1

(
ṙ
ṙ0

)m+1
ṙ ≥ 0

∞ ṙ < 0
(17)

It is possible to see that φ in (Eq. 17) is a state-dependent dissipative potential in the sense that, in addition to
its dependence on the rate ṙ , it also depends parametrically on the state through the state equation s = s(r).
This kind of description is thermodynamically consistent in the continuous time formulation and compatible
with thermodynamic theories such as that of Ziegler [47], for example. Moreover, numerical consequences of
this type of potential in the discrete time formulation were thoroughly discussed in [38,39].

The special feature to be highlighted on the above potential is the adoption of an explicit expression for the
flow resistance property (s), one of the most important properties concerning the modeling of glassy polymers.

As mentioned previously, since the seminal ideas of Boyce et al. [20], the flow resistance is taken as an
internal variable endowed with evolution rules that became increasingly complex over the years. Examples
include the models from Boyce et al. [20], Anand and Gurtin [21], Ames et al. [13], Srivastava et al. [23],
Holopainen [16], Poulain et al. [22], Gudimetla and Doghri [17]. Aided by some simple changes, our approach
reframes the theoretical perspective on the flow resistance. In the present context, the flow resistance assumes
the role of a state variable dependent on the internal variable r

s = s (r) (18)

where r is the accumulated inelastic strain (Eq. 6). Once this state equation (Eq. 18) is defined, the current
value of s is obtained by a simple evaluation from the current value of r . This perspective allows one to see the
flow resistance as a path-independent variable, in the sense that two different thermodynamic processes that
lead to the same final accumulated inelastic strain would render the same value of s.

From a numerical point of view, if an implicit finite element approach is adopted, all these previous cited
models have in common that the flow resistance and other associated variables are incrementally updated based
on the solution of a nonlinear coupled system of equations. Clearly, the dimension and intricacies of this system
are influenced by the number of internal variables involved in the solution, the flow resistance being one of
them. Alternatively, an explicit finite element formulation seems to be usually employed to circumvent this
system, the update algorithm of which becomes straightforward. In what follows, it is shown that the proposed
approach is simple enough to be incorporated effortlessly into classical implicit finite element implementations.

As it will be evident, it is possible to obtain the same overall flow resistance behavior from these previous
references in a cleaner environment, which offers an alternative strategy for the description of glassy polymers.
Examples of such an explicit expression (Eq. 18) and further discussion will be given in Sect. 5 for a better
model overview.

2.2.3 Parametrized inelastic stretching

The accumulated inelastic strain r and its rate ṙ depend on the inelastic stretching tensor Dp (see Eq. 6). This
relationship is conveniently highlighted by a parametrization P = {ṙ , N} that decomposes Dp in the scalar
ṙ ∈ R+ and the tensor N:

Dp = ṙN (19)

N ∈ N =
{
A ∈ Sym | trA = 0 and ‖A‖ = 1√

2

}
(20)

This operation is often referred as an amplitude–direction decomposition, with the stretching magnitude
described by ṙ and all other tensorial properties held by N , thus effectively defining the flow direction.
The constraints (20) over N , concerning symmetry and traceless conditions, arise from those of the inelastic
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velocity gradient Lp. The norm of N comes directly as a consequence of definitions (Eqs. 6, 19). By doing so,

an internal process Ėi =
{
Ḟp, ṙ

}
(Eq. 16) can be directly mapped to the parametrization P by Eq. (3)

Ḟp = DpFp = ṙNFp (21)

This alternative approach, with the amplitude–direction assumption, is stated as the parametrized consti-
tutive problem [24]. This parametrization (P) provides some operational conveniences and becomes a mean
to better understand and distinguish different aspects of the inelastic flow.

3 Variational constitutive updates

Variational constitutive updates correspond to a class of methods in which the constitutive updates for a given
time discretization are based on variational principles. That is, the rules employed to update a thermodynamic
state to the next one originate from an extremization process. Over the field of inelastic materials, this approach
can be linked to the works of Hill [48], Ceradini [49], Maier [50], Capurso and Maier [51], Pereira and Feijoo
[52], Martin et al. [53], to name a few, with emphasis on elastoplasticity. The technique employed here is
based on [24]. After discussing a sequence of examples, these authors demonstrate a variational principle with
thermodynamic foundation to describe general dissipativematerials, especially suited to numerical incremental
procedures. As a direct consequence, they also highlight that this variational structure can be exploited for
error estimates and mesh adaption techniques (see [24,25,54,55]).

3.1 Continuous time description

To demonstrate the variational nature of the constitutive problem, we focus primarily on a continuous time
description. All required equations are shown to be obtained from the stationarity conditions of a potential. It
can be formally done by the statement:

Variational Principle - Given a state E = {F, Fp, r} (Eq. 5) and the total deformation gradient rate Ḟ, the
process described by the parametrizationP = {ṙ , N} thatminimizes the functional Ψ̇ , among all admissible

internal processes Ėi =
{
Ḟp, ṙ

}
(Eq. 16), corresponds to the effective one

inf
ṙ ∈ R+
N ∈ N

Ψ̇ = d

dt
ψ (E) + φ

(Ė; E)
(22)

The functional Ψ̇ is built directly from the Helmholtz free energy ψ (Eq. 7) and the dissipation potential
φ (Eq. 17). From the optimality conditions of the problem (22), one can recover the desired flow equation,
expressed in terms of the direction

N = 1√
2

sym0 (Me)
∥∥sym0 (Me)

∥∥ (23)

and the amplitude ṙ , which satisfies the nonlinear equation

− 1√
2

∥
∥sym0

(
Me)∥∥ + s (r)

(
ṙ

ṙ0

)m

= 0 (24)

where Me is a stress measure given by

Me = 2Ce ∂ψ

∂Ce (25)

The symbol sym0 (·) stands for the symmetric–deviatoric operator.
Finally, and following the variational framework [24], the first Piola–Kirchhoff stress tensor is obtained

directly from an effective potential Ψ̇eff , which gathers all the minima from the above variational principle as
a function of Ḟ

P = ∂Ψ̇eff

∂ Ḟ
, Ψ̇eff

(
Ḟ

) = inf
ṙ ∈ R+
N ∈ N

d

dt
ψ (E) + φ

(Ė; E)
(26)
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In the particular case of the current viscoelastic model, the first Piola–Kirchhoff is shown to be a state-
dependent variable dependent solely on the Helmholtz free energy. As a consequence, the first Piola–Kirchhoff
is composed of three stress tensors, each one originated from one of the energetic potentials (Eq. 7)

P = ∂Ψ̇eff

∂ Ḟ
= ∂ψ

∂F
= ∂U

∂F
+ ∂L

∂F
+ ∂H

∂F
(27)

Straightforwardly, the Cauchy stress can be obtained from P through the usual operation

σ = J−1PFT (28)

3.2 Incremental constitutive update

In order to solve the constitutive problem above, it becomes necessary to appeal for numerical methods. The
incremental version of the current constitutive problem is called the update algorithm, that is, starting from
a thermodynamic state En defined at the time step tn , the next thermodynamic state En+1 at time step tn+1 is
sought. In order to generate such a procedure, the existing rates must be somehow rewritten by their discrete
counterparts. The discrete version of ṙ becomes r̊ and keeps the same physical meaning as before, relating the
states rn+1 and rn by

rn+1 = rn + r̊�t (29)

The update of the inelastic deformation gradient Fp
n+1 is conveniently performed by the exponential mapping

[56]
Fp

n+1 = EXP
[
r̊N�t

]
Fp
n (30)

since it preserves the isochoric nature of the inelastic flow
(
det Fp

n+1 = det Fp
n = 1

)
, once the traceless condi-

tion trDp = 0 is fulfilled. Calculation of r̊ and N finally comes from the solution of the incremental variational
problem below [24]

Incremental Variational Update - Given a state En = {
Fn, F

p
n, rn

}
at time tn and the total deformation gradient

Fn+1 at time tn+1, the state En+1 = {
Fn+1, F

p
n+1, rn+1

}
at time tn+1 described by the parametrization

P = {
r̊ , N

}
that minimizes the incremental potential Ψinc among all admissible states corresponds to the

effective updated state

inf
r̊ ∈ R+
N ∈ N

Ψinc = ψ (En+1) − ψ (En) + �tφ
(
E̊; En+α

)
(31)

Some terms need to be detailed. The symbolism En+α stands for an intermediate state at time tn+α ∈ [
tn, tn+1

]
,

α ∈ [0, 1], and E̊ refers to a discrete, or incremental version of a process. On the other hand, the abstract notation(
E̊; En+α

)
can be effectively replaced by (En, En+1) to make clear that only two discrete instants of time are

in fact available, and any intermediate state is approximated by an interpolation of these two states.
The optimality condition of Eq. (31) alignedwith the convenient choice of a quadraticHencky type potential

(Eq. 11), allows for an analytical expression for the flow direction N

N = 1√
2

dev
(
ε
pre
n+1

)

∥∥dev
(
ε
pre
n+1

)∥∥ (32)

which depends solely on an elastic predictor state Epre
n+1 = {

Fn+1, F
p
n, rn

}
defined at time tn+1, where

ε
pre
n+1 = 1

2
ln Cpre

n+1, Cpre
n+1 = (

Fpre
n+1

)T
Fpre
n+1, Fpre

n+1 = Fn+1
(
Fp
n
)−1

. (33)

Other general expressions for the elastic potential (H) could be employed. The spectral projection used by
Fancello et al. [27] would widen the formulation to more general isotropic elastic potentials, such as the Ogden
model, also allowing for a semi-analytical solution. Other approaches lead to the solution of a fully coupled
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system for both the flow amplitude and the flow direction. A further discussion about the parametrization of
the flow rule can be found in [36].

Once the tensor N is obtained, the single equation remaining to be solved arises from the optimality
condition related to the flow amplitude and is analogous to Eq. (24)

r̊ + s (rn+α)

μH�t

(
r̊

ṙ0

)m

+ α

μH (m + 1)

ds

dr
(rn+α)

(
r̊

ṙ0

)m+1

=
√
2

�t

∥
∥dev

(
ε
pre
n+1

)∥∥ (34)

A study and discussion on the effects of the algorithmic parameter α over the general solution and con-
vergence properties for J2 elasto-viscoplasticity can be seen in [39]. The special case of a null algorithmic
parameter (α = 0) renders

r̊ + s (rn)

μH�t

(
r̊

ṙ0

)m

=
√
2

�t

∥∥dev
(
ε
pre
n+1

)∥∥ (35)

Note that when solving for a new state at tn+1, the quantities
√
2

�t

∥∥dev
(
ε
pre
n+1

)∥∥ and s(rn)
μH�t are well defined and

depend solely on information from the previous state En , and thus are constants in this equation. Also, note
that the flow resistance curve (s) just needs to be sampled at a given accumulated inelastic strain rn and not
solved as an internal variable, as commonly found in the literature. After solving Eq. (34), the variables r̊ and
N (Eq. 32) are used to update states (En → En+1) (Eqs. 29, 30).

Analogously to the continuous time formulation (Eq. 22), the updated first Piola–Kirchhoff Pn+1 can also
be obtained directly from an effective incremental potential [24]

Pn+1 = ∂Ψ eff
inc

∂Fn+1
, Ψ eff

inc (Fn+1) = inf
r̊ ∈ R+
N ∈ N

ψ (En+1) − ψ (En) + �tφ
(
E̊; En+α

)
(36)

Again, due to the particular dependencies of the proposed dissipative potential (Eq. 17), only the Helmholtz
free energy contributes to the calculation of the stress tensor

Pn+1 = ∂Ψ eff
inc

∂Fn+1
= ∂ψ

∂Fn+1
(En+1) (37)

which ends up generating the same relation as Eq. (27) for the updated first Piola–Kirchhoff stress Pn+1, with
all the quantities being evaluated at the updated state En+1. An overview of the derived constitutive update
algorithm is shown in table (Algorithm 1).

Algorithm 1 Constitutive Update Algorithm
Given:

1. A set of material parameters
2. A previous state En = {

Fn, F
p
n, rn

}
at tn

3. An updated total deformation gradient Fn+1 at tn+1

Calculate:

1. The predictor state Epre
n+1 (Eq. 33)

2. The analytical flow direction N (Eq. 32)
3. Solve for the flow amplitude r̊ (Eq. 34)
4. The updated accumulated inelastic strain rn+1 (Eq. 29)
5. The updated inelastic deformation gradient Fp

n+1 (Eq. 30)
6. The updated first Piola–Kirchhoff tensor Pn+1 (Eq. 37)

End. The state En+1 = {
Fn+1, F

p
n+1, rn+1

}
at tn+1 is known.
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4 Extension to multiple Maxwell branches

The inclusion of multiple rheological branches, such as Kelvin and Maxwell ones, is a common practice
described in many textbooks on linear viscoelasticity to improve the predictions of polymers. For instance,
several parallel Maxwell branches would allow the description of different relaxation intervals, as shown in
Fig. 1.

The current framework, presented in Sect. 3, can be extended to include multiple Maxwell branches within
the same context of large strains. Each branch has its own Hencky energy (Eq. 11) and its own dissipation
potential (Eq. 17), as well as its own set of state variables Fp e r . When these new potentials are included in
the variational principle (Eq. 31), it can be shown that the minimization process leads to a set of uncoupled
discrete equations, each one with respect to one particular Maxwell branch, analogously to (Eq. 34).

The effect of including one extra branch will be explored in Sect. 6.2 to address the unloading condition
of PMMA.

5 Flow resistance function

As stated in Sect. 2.2.2, one aspect that differs from standard methodologies is the employment of an explicit
function for the flow resistance (FR). One can consider the resistance to be constant

s (r) = s0 (38)

rendering, for example, a traditional Perzyna flow rule [24,39]. Moreover, a Newtonian flow could be obtained
by assuming a linear dependence on the viscous rate. However, these assumptions are not satisfactory to deal
with glassy polymers, as they generally show a complex evolution of the flow mechanisms. A better choice
would be a function that accounts for the possibility of a FR transition, ranging from an initial state s0 to a
saturated value s∞. This is the core idea introduced by Boyce et al. [20]. Indeed, starting from expression (18),
the FR evolution is directly obtained by a simple chain rule

ṡ = ds

dt
= ds

dr

dr

dt
= ds

dr
ṙ (39)

This expression has been used as a standard template to tailor the evolution of the flow resistance over the last
years. Small changes of notation aid to see that [20] propose the following evolution law in their model

ṡ = h

(
1 − s

s∞

)
ṙ , s (0) = s0 (40)

which is a particular case of (39). Time dependency can then be eliminated from (40) leading to a differential
equation relating s and r solely, with solution

s (r) = s∞ + (s0 − s∞) e−ζr (41)

Function (41) captures the essence of the model introduced by Boyce et al. [20]. An even more elaborated
evolution is the system proposed by Anand and Gurtin [21], conveniently rewritten below

ṡ = h

[
1 − s

s∞ [1 + b (ηcv − η)]

]
ṙ , s (0) = s0 (42)

η̇ = g

(
s

s∞
− 1

)
ṙ , η (0) = 0 (43)

which depends on a new variable η that measures the free volume within polymeric chains. Analogously to
(40), the FR and the free volume evolution rules expressed in (42) and (43) can be recast, arriving to a nonlinear
non-homogeneous system of differential equations. Unfortunately, working with this kind of coupled system
within the context of implicit finite element schemes is a cumbersome task, and thus an approximation is
sought. In principle, Eq. (42) could be linearized with respect to η leading to a non-homogeneous, but linear,
system of differential equations with general solution

s (r) = a0 + a1e
α1r + a2e

α2r (44)
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Fig. 2 Flow resistance. Comparison between [21] (Eqs. 42–43) and the current work (Eq. 44)

In order to assess whether the last expression is in fact an approximate solution of the nonlinear system (42–
43), both responses are simultaneously plot in the Fig. 2. Clearly, the proposed expression closely follows the
original curve and consequently is able to represent the initial grow and subsequent decrement of the flow
resistance as a function of r . In addition, the number of controlling material parameters reduces from 6 to 5.
Expression (44) then becomes a convenient alternative way to describe the principles introduced by Anand
and Gurtin [21] and appropriately represent the strain softening phenomenon. It should be emphasized that,
despite previous reasoning, no complete equivalence between both material models is claimed since they differ
in their overall rheological representation.

Unfortunately, the biexponential function as represented by (Eq. 44) is not adequate for material parameter
identification. Conveniently, the same equation can be rewritten by the use of auxiliary functions

s (r) = s0N0 (r) + s∗N∗ (r) + s∞N∞ (r) (45)

In this way, it becomes possible to directly correlate three characteristic resistances {s0, s∗, s∞} with three
values of r . The initial resistance s0 is associated with r = 0

s (0) = s0 , (46)

the ultimate resistance s∞ to the limit r → ∞
lim
r→∞s (r) = s∞ , (47)

and an intermediate resistance s∗ can be linked to a given convenient value r = r∗ > 0

s (r∗) = s∗ (48)

The intermediate pair (r∗, s∗) may be set to be near the peak value, for example. The functions built to match
these criteria are explicitly given by

N0 (r) = e−ζr∗−βr − e−βr∗−ζr

e−ζr∗ − e−βr∗ (49)

N∗ (r) = e−ζr − e−βr

e−ζr∗ − e−βr∗ (50)

N∞ (r) = 1 − N0 (r) − N∗ (r) (51)

The parameters ζ and β control the overall shape of the function, providing a rapid (or slow) evolution toward
s∗ and s∞. It is important to note that functions (44) and (45) exactly match each other, representing the same
biexponential evolution of the flow resistance. Thus, it is just a matter of convenience selecting one or another,
as the choice does not change the behavior of the constitutive problem. These auxiliary functions are given in
Fig. 3 for a given set of parameters (ζ, β, r∗).

As well as other available FR models (in the format of evolution equations) found in the literature [16,22],
the biexponential function provides an increased flexibility for the description of the initial behavior of the
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Fig. 3 Example of auxiliary functions N0, N∗, N∞ for ζ = 8, β = 45 and r∗ = 0.1

flow resistance. On the other hand, this extra flexibility can be detrimental to the material model by possibly
introducing parameters with low overall sensitivity. Guided by these observations, the authors would like to
introduce another FR function with a slight incremental improvement to the exponential model, accounting
for a possible delayed (although also exponential) evolution

s (r) = s∞ + (s0 − s∞) e−ζ 〈r−r∗〉+ (52)

The parameter r∗ is a characteristic accumulated inelastic strain that triggers the loss of resistance through the
ramp function 〈x〉+ = (x + |x |) /2. Evidently, one can still recover the exponential model by manually setting
r∗ = 0, or by obtaining a null fitted r∗ parameter.

All three flow resistance functions (the exponential model (Eq. 41), delayed exponential model (Eq. 52)
and biexponential model (Eq. 45)) predict a softening saturation value s∞, attained when the accumulated
inelastic strain approaches infinity. One could associate this behavior to a well-known class of saturation
models found in plasticity theory, such as the Armstrong–Frederick model. However, it is important to note
that the Armstrong–Frederick model accounts for kinematic hardening, yielding a backstress tensor, whereas
the model presented here does not.

These flow resistance functions will be employed and evaluated in the next section.

6 Numerical results

The main purpose of this section is to address some numerical experiments with the proposed model in order
to verify its capabilities. To completely define the model, the following material parameters are required; the
hyperelastic nature of the model is described by μH (Hencky Energy, Eq. 11), κ (volumetric energy, Eq. 8),
{μL , λ} (chain locking energy, Eq. 9); and the dissipative nature of the model is partially described by the
exponentm (dissipative potential, Eq. 17). The remaining of the dissipative potentialmakes use of a FR function
s (r), which requires one of the following sets depending on the model chosen to describe it: {s0, s∞, ζ } for an
exponential evolution (Eq. 41),{s0, s∞, ζ, r∗} for a delayed exponential evolution (Eq. 52); or {s0, s∗, s∞, ζ, β}
for a biexponential evolution (45). Note that ṙ0 in Eq. (17) is just an unitary parameter to ensure that units are
compatible.

6.1 PETG—poly(ethylene terephthalate)–glycol

Experimental data were extracted from the literature to verify if the proposed model is able to capture the
essence of the behavior of polymers in real tests. Even though it is provided later on, the authors do not claim
to have found any definitive set of material parameters to be used in real applications, due to the small number
of experiments used to calibrate the model. Special focus is given to issues like strain softening, evolution
of flow resistance, and the strain rate dependence. It is tacitly assumed that all experimental results already
represent the intrinsic material point behavior, and thus any other non-local or structural effect is neglected.
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Fig. 4 PETG: experimental results from Dupaix and Boyce [57] (markers) and prediction using the exponential flow resistance
model (Eq. 41)

A set of experimental results was extracted from the work of Dupaix and Boyce [57], where uniaxial and
plane strain compression experimentswere performed on poly(ethylene terephthalate) (PET) and poly(ethylene
terephthalate)–glycol (PETG) at different temperatures and strain rates. Among these, the uniaxial compression
tests for PETG at the temperature of 25◦ C and strain rates {0.01 , 0.10, 1.00} [1/s] were selected. The
constitutive model was fitted to this set of experimental data three times, each one assessing one particular flow
resistancemodel. FollowingDupaix [58], the Poisson’s ratiowas assumed to be 0.33. The resulting compression
behaviors can be seen in the Figs. 4(Exponential FR), 5(Delayed Exponential FR) and 6(Biexponential FR),
where the markers refer to the experimental data and the solid lines to the model prediction. One can notice
that, independently of the flow resistance model adopted, all three functions provide qualitatively the same
overall results and are able to capture the strain softening behavior.

The fitted FR functions associated with this material are displayed in Fig. 7. It becomes clear that the
main difference among the three tested FR models is the flexibility for describing the initial flow resistance
evolution. Noticing that all these FR models share the same asymptotic loss of resistance, the exponential
model only allows for an immediate loss, whereas the delayed exponential and the biexponential can either
keep or increase the initial resistance. This initial excessive rigidity showed by the exponential model is
then propagated toward the ultimate resistance (r → ∞) to account for “error compensation”, and hence the
possible inferior predictive capability. The authors would like to point that drawing one definitive statement
for rejecting one model against the other is not reasonable from just one set of experiments. Nonetheless, as
a highlight, note that this intuitive aspect of interpreting and visualizing a flow resistance curve allows and
creates a more practical environment for constitutive modeling, instead of dealing with evolution laws in the
format of differential equations.

The set of fitted parameters are given in Table 1. As the hyperelastic nature of the whole material model
is the same for all tested FR functions, as well as the power-law-like dissipative behavior, the specific FR
parameters were split into a separated table for a better insight of the different aspects provided by each one.
The parameters s0, s∞ and s∗ (the last one available only in the biexponential model) are self-explanatory,
as they represent the flow resistance sampled at targeted locations, r = 0, r → ∞ and r = r∗ respectively.
The parameter ζ controls the resistance decay toward s∞, and for the biexponential model β has a mixed
influence over the initial resistance growth and peak location. In the delayed exponential model, r∗ sets the
critical inelastic strain at which the material starts to experience resistance loss, in this particular case being of
around 6.1%. That is, the material would behave as a standard constant “viscosity” model up to an accumulated
inelastic strain of 6.1%, and afterward would start to lose resistance. At this stage, the entropic mechanisms
would dictate how the material point recovers its stability, as predicted by (9).

6.2 PMMA—poly(methyl methacrylate)

Experimental results for PMMA can be found in the work of Ames et al. [13], where uniaxial compression
load–unload experiments were performed at different temperatures and strain rates. The uniaxial compression
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Fig. 5 PETG: experimental results from Dupaix and Boyce [57] (markers) and prediction using the delayed exponential flow
resistance model (Eq. 52)

Fig. 6 PETG: experimental results from Dupaix and Boyce [57] (markers) and prediction using the biexponential flow resistance
model (Eq. 44)

Fig. 7 PETG: resulting fitted flow resistance functions for each model

tests for PMMA at the temperature of 100◦ C and strain rates {0.0003, 0.001, 0.01, 0.1} [1/s] were selected.
In this case, the unload history may not be properly captured employing just one Maxwell branch. Figure 8
aims at illustrating this fact, where it is evident that different strain rates render significantly different unload
curves.

To address this behavior, two Maxwell branches were considered. The first one uses a biexponential flow
resistance model (Eq. 44) and the second one is assumed to have constant resistance (Eq. 38). Table 2 contains
the fitted parameters and Fig. 9 shows the predictions employing these two branches. Clearly, the adoption of
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Table 1 PETG: Fitted parameters

(a) Shared parameters

FR model μH (MPa) μL (MPa) λ m

Exponential 384.4 12.2 11.56 0.0577
Delayed exponential 391.2 9.92 9.579 0.0545
Biexponential 396.4 9.26 8.059 0.0537

(b) Flow resistance function parameters

FR model s0 (MPa) s∞ (MPa) s∗ (MPa) r∗ ζ β

Exponential 39.4 16.2 – – 3.563 –
Delayed exponential 36.6 19.0 – 0.0609 4.898 –
Biexponential 33.2 19.5 33.7 0.1000(1) 4.982 60.24

(1) Instead of a material property, this is a constant that describes the accumulated inelastic strain at which the material property
s∗ is being evaluated

Fig. 8 PMMA: experimental results from [13] (markers) and predictions using one Maxwell branch with a biexponential flow
resistance model (Eq. 44)

Table 2 PMMA: Fitted parameters with two Maxwell branches

(a) Parameters for the first Maxwell branch. Biexponential flow resistance model

μH (MPa) m s0 (MPa) s∞ (MPa) s∗ (MPa) β ζ r∗

349.1 0.165 30.67 8.004 17.598 1.393 6.020 0.100

(b) Parameters for the second Maxwell branch. Constant flow resistance model

μH (MPa) m s0 (MPa)

58.676 0.129 13.670

(c) Volumetric and Gent branches

κ (GPa) μL (MPa) λ

1.071 2.985 64.68

Temperature 100◦C

another branch improves the unloading behavior by providing extra flexibility and making it less sensitive to
different strain rates.

6.3 Convergence and algorithmic parameter

Being a numerical framework and based on discrete time approximations, it becomes important to verify how
time intervals influence the solution concerning stress convergence. Moreover, motivated by the simplification
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Fig. 9 PMMA: experimental results from [13] (markers) and predictions using two Maxwell branches. First branch employs
a biexponential flow resistance model (Eq. 44) and the second one has a constant resistance (Eq. 38). Both branches follow a
power-law flow rule (Eq. 17)

Fig. 10 Convergence assessment. Maximum relative error

provided by the algorithmic parameter α [cf. (34) and (35)], one may wonder what are the observed effects
of a particular choice for α. To this end, different simulations were performed, each one having its own time
interval �t and algorithmic parameter α (Eq. 34). A solution used as reference was generated using a large
number of time divisions, namely O (

105
)
, thus resulting in a small time increment. For each pair (�t, α) the

numerical experiment consisted of a simple tensile test with constant strain rate, and the maximum relative
error in stress (e)

e (�t, α) = max
t∈[t0,t f ]

∥
∥σ − σ re f

∥
∥

∥∥σ re f
∥∥ (53)

was computed and registered. Figure 10 gathers all these results. As the time interval becomes smaller, so
does the maximum relative error. Independently of the algorithmic parameter α, a linear convergence could
be observed, which matches the observations of Brassart and Stainier [39] for small strain J2 plasticity, and
is consistent with a backward-Euler scheme. One can see that, for these experiments, a parameter of α = 0.5
performed the best, although as pointed out by Brassart and Stainier [39] there may actually exist one optimal
α for each set of material parameters used within the model. Regarding the relative error itself, the parameters
α = 0 and α = 1 performed virtually the same, but Eq. (35) to be solved for each time increment is simpler
in the former case. This fact also renders a competitive alternative against α = 0.5.

6.4 FEM framework

The proposed viscoelastic model was implemented inside a standard quasi-static FEM framework and a tensile
test of a 3D specimen was performed. The geometry was generated according to the ASTMD638 standard for
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Fig. 11 Three-dimensional view of the tensile test of a standard specimen. Color map corresponds to the flow resistance and the
wireframe edges correspond to the undeformed geometry (color figure online)

Fig. 12 Tensile test of a standard specimen. Color map corresponds to the flow resistance at t = 0s, t = 10s and t = 100s (color
figure online)

a Type I specimen. A prescribed displacement rate of u = 1mm/s was set at the extremity of the specimen.
The test was conducted for the fitted PETG (Sect. 6.1) using the biexponential flow resistance model (Eq. 45).

From the experimental point of view, it is extremely difficult to ensure all symmetries (material, geometry
and boundary conditions). Thus, it is common practice to consider just a fraction of the geometry and endorse
it with appropriate symmetry boundary conditions. To ensure a symmetric physically reasonable response, one
could induce macroscopic yielding by artificially moving some nodes and causing a stress concentration at the
(symmetric) axial boundary. Even with this practice in hand, some artificial patterns may arise when rebuilding
the solution field over the full geometry. Differently, the numerical tensile test performed here was conducted
using the entire geometry of the specimen and no symmetry boundary conditions were applied. One more
practical and natural way of verifying the macroscopic yielding is to admit that the material is heterogeneous.
To this aim, the material properties were allowed to have a variability within a ±1% range, so each integration
point would have its own set of properties (Fig. 12).

Figure 11 gathers three time instants from this numerical experiment: the initial state (t = 0s); the first
evidence of macroscopic yielding (approximately t = 10s); the end of the analysis (t = 100s). The color map
ranges from blue to red and represents the current flow resistance value. One can note the randomized properties
through the dispersion of the initial FR shown for t = 0. The second snapshot reveals multiple regions that
lose resistance simultaneously, and the least resistant one will end up governing the softening behavior and
triggering the necking. The third snapshot shows that, even after a long propagation, some regions keep their
FR value constant until their cross section is engaged. Figure 13 reveals the overall force at the extremity of
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Fig. 13 Force evolution

the specimen as a global result of such a resistance loss, and is compatible with general observed experimental
data.

From the numerical point of view, solving only one scalar equation (Eq. 34 or the special case Eq. 35) at
each Gauss point revealed to be less time consuming and could reduce coding complexity.

7 Conclusions

The main result brought by the present work is an alternative formalism, set in variational statements, that
captures the core of a widely used class of models for glassy polymers. In thesemodels, the inelastic behavior is
based on the solution of (eventually coupled) differential equations that account for the evolution of an internal
variable called flow resistance. It was shown that the flow resistance can be recast in a simpler framework in
which it becomes dependent on an accumulated measure of the inelastic strain. Within this strategy, the flow
resistance can be seen as a mechanical property dependent solely on the current state. Three different flow
resistance models were discussed and tested.

In addition, the simplicity of the proposition allows its inclusion in most classical thermodynamically
consistent constitutive approaches, well suited for the use of implicit finite element codes. Particularly, the
adopted variational framework reduced the local constitutive problem to the solution of a single nonlinear scalar
equation, emulating the simplest case of viscoelastic models. The extension to multiple Maxwell branches was
discussed, and it was shown to be able to capture the unloading behavior of PMMA.

Numerical assessments showed an excellent agreement with compression experiments, and a monotonic
linear stress convergence could be observed for small time steps. A FEM example was used to verify a tensile
test for a 3D specimen having a heterogeneous material distribution.

Clearly, further dependencies have to be accounted for in order to turn this approach able to reproduce
more general thermomechanical behaviors observed in these materials. Temperature coupling and pressure
flowdependence are among themost classical ones that could be includedwithin the same variational approach,
following similar ideas of Yang et al. [26].
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